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On a Refinement of the Theory of the Moon's Physical Librations

I. Michelson*

NasA CR71148

The standard formulation of the dynamics of physical librations of the

Abstract

Moon is re-examined in the light of currently accepted reduced estimates

of the mechanical elliptiecity of the lunar equator. It is seen that a more
complete mathematical model is required which accounts for centrifugal
couples and in which the sum of inclinations of lunar orbit (5°9') and equator
(1°30') is not regarded as an infinitesimal quantity. Although it remains
doubtful whether linearized differential equations can be expected to yield
a quantitatively useful theory, a preliminary to more accurate calculation
consists in analyzing the motion with fewer restrictions than has been
customary. The main features of such a treatment are given which unify the
classical analysis by showing how the afore-mentioned inclinations can both
be used to estimate the two principal mass parameters that affect physical
librations. When accurate short-period libration data become available,
the constants in question can be evaluated without recourse to orbital data

used in the past.
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Equations of Physical Libration

When the Moon is regarded as a rigid bvody, its total angular momentum
is expressible as a function of its principal-axis inertia moments and

angular velocity components:
H= Amlfl + sziz + CN3I3 - (1)

vhere the principal-axis unit vectors Il, Ig, 53 appear with the quantities
in each case corresponding to the same axis. The angular velocity components
w), Wy, w3 are total quantities, referred to an inertial coordinate frame,
and it is emphasized that no point of the Moon is then considered to be fixed
in space. Taking account of the time variations of the unit vectors, the

rate of change of total angular momentum becomes

I, I, i,

af dwy _ dwy _ dws _ .

at - Et-—il+BE.t—iz+C§*i3+ W) W w3 . (2)
Awy Bwy Cuj

If the components of the total moment of external forces acting are denoted
M;, My, M3, these are equated to the components of (2) to obtain the familiar
equations of Euler in scalar form

dw)
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Equations (3) serve as the basis of studies of the physical librations

of the Moon, and will be brought to a standard form by evaluating the moments




on the right side of (3). For this purpose it is convenient to introduce
cartesian axes x, y, z, with origin at the Moon's centroid, Ox passing
through the Earth's centroid. Then an element of lunar mass dm situated

at (x,y,z) is at distance p from Earth centroid:
p2 = (r - x)2 + y2 + 22 , (%)

The Earth-Moon centroid separation is denoted by r, and the attraction on

dm by the Earth mass E considered to act at its centroid is then

- —‘E)ldm (x - r)i :_m + zk (5)

aF

the units being chosen so that the universal constant of gravitation is
unity. With the usual convention for unit vectors I, J, k, the vector
location of the mass element is xi + y3 + zk and the moment about lunmar

centroid O of the elementary force (5) is
I 3 k
Yy

z | = :-E-dggl (yk = zJ) . (6)

D! P
X-r y 2

The moment is evaluated by integration of (6), using (4) in the form

b - 3/2,0% 2 2%) 4 o(kp) (1

1 _1 3x
i A r

retaining only the first two terms in brackets, so that

ﬁ=%§{zjnm-3]xzm} . (8)

When (8) is referred to principal inertia axes and x;, X;, X3 are understood
to represent the Earth's centroid coordinates in this reference frame, a

straightforward reduction gives




W= 23% {(B - C)xyxsly + (C = A)xaxyIp + (A - B)xyxpI3) (9)

vhere successive terms in (9) give the right sides of the three equations
(3). In addition to the approximation already made in neglecting the
third and subsequent terms in (7), & further approximation is introduced in
expressing (9) in terms of ecliptic plane coordinat‘es by considering the
angle 6 subtended by the lunar equator and the ecliptic small enough to

Justify writing Y ecliptic

8
\‘\"{xl lunar
x2 equator
b 41 cos¢ s8in¢ -6s3in¢ X
x; | = |-8in¢ cos¢ -Bcosé || Y (10)
X3 0 6 1l Z .

The transformation (10) shows that the descending node of the lunar equator
on the ecliptic is taken as the direction of axis X, while Z is Earth's
coordinate normal to the ecliptic plane and x;, x; are understood to
represent the principal axes normal to the Moon's rotation axis. When the
orbit inclination i is regarded as a small angle, the coordinate Z is
correspondingly limited, and it is customary to neglect the product of the
angle 6 with the coordinate Z. In this case it is seen that the products
of coordinates (10) required in the moment expression (9) are of the forms

shown on the right sides of the equations (11)

A %- (B -C)pr = '—zEs' (B - C)lcos¢ (YZ + Y20) - sing (XYo + X2)]

B % - (C - A)gp %’} (C - A)[cos¢ (X2 + 2Ye) + sin¢ (Y2¢ +YZ)]  (11)

E%Eg (A - B)[(Y2 - X2)sin2¢ + 2XY cos2¢] .

dp _ -
C 3t (A - B)rq




By replacing the symbols w;, wy, w3 in (3) by q, r, p respectively, the
standard form (11) of the equations of physical librations conforms with
the notation of Laplace (with these two exceptions only, that E and r in
present equations are written as L and r; in the equations identified as
(G') in Chapitre II, Livre Cinquiépe, Premiére Partie of the Traité de
Mecanique Céleste). The rotation of the Moon being principally about the
axis, x3, the corresponding component p is larger than either q or r, and
Laplace therefore omitted the second term on the left side in the last
one of equations (11), taking the presumed smallness of the principal
moment difference (B - A) as further justification for the neglect of this
term.

For later reference we note here the form of terms neglected in the
square brackets of the last equation of (11). When 02 is not neglected,
nor the product of 6 and Z, it is readily shown that xj-component of the

couple exerted by the Earth on the Moon also contains terms
-82Y2 sin2¢ - 02XY cos2¢ - 6Z(2X cos2¢ + Y sin2p)

- 7292 gin2¢ + 0(e3). (12)

Libration in Longitude; Estimation of Equatorial Principal Inertia Moment

Difference (B - A)

When the product rq in the last of equations (11) is neglected, the
equation may be regarded as independent of the two companion equations, and
its separate solution is investigated for the purpose of estimating the
difference B - A of lunar inertia moments. The moment term is evaluated
first by expressing X and Y in terms of longitude angle v measured from

descending node of lunar equator:




X = r cosv Y = r sinv (13)

It is thus seen that the bracketed term on the right in the last of (11) is

given by r? multiplied vwith

[sin2(v - ¢)] earth orbit (14)

. ecliptic
[
— ¢ \in > ___ lunar equator

where v - ¢ is the longitude angle subtended by the principal axis x; and

the Earth-pointing direction. The Earth's orbital motion relative to the
Moon is v - §, and if its mean value is denoted by n, vhile the periodic

inequalities are written as g;— IH sinw, then

v-#-‘-‘Indt'i-ZHsimr . (15)

Likewise the lunar rotation angle measured from a fixed direction is ¢ - ¥,

and if this is very nearly equal to the mean orbital motion, we can write
¢ -9 = I ndt +u (16)

vhere u is a small quantity taken es the measure of physical libration in
longitude. Thus (15) and (16) show that the Earth's couple is determined

by (1k) as a term
sin2(-u + I H sinn) = -2u + 2 I H sinx (17)

provided the terms on the right side of (17) are sufficiently small. Then

the librationm in longitude is determined by the equation

a B -A (B - A
35*3“2"6"“=3“2—'E_)'z“i" (18)
6




where %3— is written as the mean motion term n2. Since
Pp=9%-cosé}y =3 -9, (19)
and n may be taken as nearly constant, (16) shows that

ap . 2%

at  at? (20)

and the libration in longitude is oi the same character as the forced

oscillator:
2 - -
%‘; + 3n? E-E—é-u = 3n? (-B——C——A) JH sinx (21)

vhere the inequalities H sin® are regarded as known functions of time.
Although the value of the coefficient 3 B—%—A on the left side of (21) is not
known, the failure to detect librations at frequencies corresponding to the
range of values within which it is believed to fall has led to the conclusion
that free oscillations are too small to observe. Hence the total libration
is attributed to the forcing terms and the associated particular solution

of the inhomogeneous equation (21):

= _an2 B - A H sinw
R A rrivanry = Y (22)
dt C

The ellipticity of the Moon's equator being small, and its mechanical measure
EE—A s» it is seen that appreciable amplitudes can be expected only for great
inequalities (large H) and for long-period inequalities (-g% small). Laplace,
having at first no libration measurements with which -BE—A estimates could be
inferred, determined that this quantity could be expected to be positive,

and less than 0.0028L4. Later Nicollet's work was taken by Laplace to justify



assigning the value 0;000563 in 1819; Franz' corrections reduced this to
0.000315 in 1880; Jeffreys in modern times estimates 0.000118 * 0000057,
indicating an uncertainty possibly as great as 48% of the estimated value
if.self. For present purposes it is- of main interest to note that the 1819
value, itself a small fraction of the upper bound furnished by Laplace, may
require a further ten-fold reduction, if current estimates are valid. From

{91 and (99) 14+ 1a =« thnd A o e
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by like reduction in the values of the libration u. In view of the possibly
so appreciable reduction of magnitude of terms retained in (21), the question
is raised whether terms earlier neglected in obtaining (11) and deriving

(21) from it can still be verified to be uniformly very small by comparison
with terms retained. Such & postiori verification is necessary to establish
the consistency of the analysis and the meaning of its conclusioms.

Solar Gravitational Couple

When the Earth-pointing direction and the Moon's x; axis are in near
coincidence, the forcing couple is very small, as seen from equations (11),
(1) and (17); in the limit v - ¢ = 0, it vanishes. At these times it is
clear that the Sun's gravitational couple is not small by comparison, and
the idealization of physical librations as a two-body phenomenon is inadequate.
A peculiarity of the standard analysis as Just reviewed is to be noted in
this regard. Already not later than '1693 it was known that the Sun plays
a role of crucial importance in establishing lunar rotation as it was
accurately described by D. Cassini. His characterization of the motion noted
the coincidence of equatorial and orbital nodes on the ecliptic; otherwise
stated, the fact that the Moon's rotation axis, its orbital axis, and the

pole of the ecliptic are permanently coplanar. The complete absence of any




dynamic role of the Sun, in the classical libration theory, by contrast,
can only be taken as an indication of the incompleteness of the mechanical
formulation represented by equations (11).

It is evident that solar couple terms can be introduced into (11) by
the simple addition of appropriate terms to the right sides of these equations,
containing the Sun's mass S and distance R in place of E and r, and where
X. Y represent the Sun's coordinates. Z being zero because the sun is in the

ecliptic. Lagrange omitted terms of this type by observing that the ratio

R "~ r 178.7
constants in the more complete expression for the longitudinal couple

is small, which represents the fractional value of the

-3 A-B
2

=2 (%5 sina(v - ¢) + S5 sin2(v' - 9)] (23)

where v' represents the Sun's longitude. Present indication that the term
(14) appearing as a factor multiplying %3- is very small, while sin2(v' - ¢)
takes all values in the interval [-1,41] four times each lunar month, means
that a more significant comparison is obtained as a ratio of the two terms
in brackets (23). Denoting these respectively by Ly and Ly when the second
term is at its peak, the limiting value of the couple ratio is dependent on

(v -~ ¢) and indicated for three values of the angle as follows

2(v - $) IB 3+ LE

1" 1150
1' 19 (24)
1° 0.33

Although the angle (v - ¢) cannot be considered to be accurately known, it

is believed to be of the order of a few minutes of selenocentric arc at most,




so that there are four times each month when the Solar couple is dominant;
the length of these intervals cannot be specified. There can be little
doubt that Cassini's observation has a dynamical explanation to be found
in the inclusion of Solar effects in the libration analysis in the manner
Just indicated.

Equations (11) are arranged to dispiqy graviational couple effects

+had ad and nawi nddrally addiEinnol

cn the righ
solar couple terms must be included provides a convenient opportunity for
further physical interpretation. The inertia effects on the left side of
each equation are recognized as having distinct meanings for physical
librations of small amplitude. Whereas the first term in each case is seen
to represent an unsteady acceleration, the second term in each equation is
readily verified to represent a quasi-steady centrifugal couple. Thus in
idealized motion of the form described by Cassini, the gravitational couple

is balenced by centrifugal couple so that the motion is one of relative
equilibrium in a rotating frame of reference. Now the centrifugal forces

are the consequence of orbital motion, and inclusion of Solar gravitational
couple terms raises the question whether the heliocentric orbit curvature
gives rise to centrifugal couples which must be considered in additiomn to
those related to the Moon's geocentric orbit. A closer examination confirms
that terms are present of the order of 1/13.3 times the geocentric-centrifugal
terms, as might be expected. As these do not appear to introduce qualitatively
different motion, however, their retention may be deferred until numerically

accurate calculations are required.

10




Centrifugal Couple Identification

As a preliminary to the inclusion of the cross-product terms of (11)
in the sanalysis of physical librations, it is useful to clarify their
interpretation for the motion under consideration. For the sake of simplicity
only the Earth-Moon interaction is included, as the extension will be clear
for the heliocentric component of motion and the related forces. When orbit
eccentricity is also neglected. each mass element of the Moon is accelerated
toward the axis of the orbit plane, so that the effective orbital centrifugal

force per unit mass can be written simply as
f = n2{X,1, + (L + X3)13} (25)

where £ is the distance from Earth-Moon barycenter to lunar centroid, X; and
X3 are orbit-plane cartesian coordinates measured from lunar centroid and
oriented as shown, Iz and ig are the associated unit vectors. The moment

about lunar centroid is obtained by

]

taking the vector product of the position

|
l
|
|
vector : ’__,«—'
|

lunar
centroid

X31y + X1y + X3lg e B
I arycenter

with the force (25) and integrating over all mass points of the Moon; thus

1y I, 13
I-(=n2I X; X, X3 |dm (26)
0 X, #4Xj3

The reduction of (26) is similar to that of the approximate gravitational

couple (6), although the corresponding approximations have not been introduced

11




in (26). When orbit plane axes and principal axes are related by the

transformation
X a) a; a3 X3
X | =] by by by X, (27)
x3 ¢y c2 c3 || X3

after a straightforward calculation,‘ as
K = -n2{(C - B)bjc,i; + (A - C)eya;I, + (B - A)ajbyish. (26)

Furthermore the orbital motion n parallel to X; has principal axis components
w); = q = ajn, w2 = r = byn w3 = p = cjn

so that, for example, the i3 component of centrifugal couple is
-(B - A)qr. (28)

Comparison of (28) with the corresponding term in (11), with due regard for
sign, then gives the immediate interpretation that the term gf—, for example,

is equal to the sum of x3-components of gravitational and centrifugal couples.
Quasi-steady motion of the Cassini-type represents the dynamic balance of

the two couples alone. It is clear, of course, that centrifugal couples must
be present in much the same form as the gravitational couples, each representing
the effect of nonuniformities of mass distribution while the total of each
resultant force simply establishes the orbit conditions. A significant
difference between the two couples is to be noted, in that all forces are
effectively directed to a single point in the case of the gravitational couple,

but only toward a given line (orbit axis) in the case of the centrifugal couple.

12




In the classical development of physical librations the neglect of
the cross-product term in (11) therefore has the meaning that the "pure"
inertia term %E'is supposed to react alone with the gravitational couple
of the libration in longitude. As will be seen below, the presently
accepted values of B ~ A do not justify the neglect of centrifugal couple
term, and it may be surmised that the quasi-empirical character of the

- A mmalVlmane AP 17
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has obscured a more fundamentally correct physical interpretation.

Centrifugal Couple, Influence on Libration in Longitude

The principal-axis rotation components q and r in equations (11) can
be analyzed by examining the compound rotation détermdned by orbitsal motion
vhich produces a curvilinear trajectory of the lunar centroid plus the
libration referred to axes fixed within the Moon. A convenient description
of compound rotational motion uses the decomposition of position vector R
of a point P, referred to an

inertial center 0,, as

ﬁ=ﬁo+§1+§2.

The vector ﬁo can, for definiteness, be regarded as locating Earth-Moon bary-
center E, while R; extends from E to lunar centroid O, and K, locates the

point P from 0. Introducing natural coordinate unit vectors such that

Rg = RoeRo s R} = RleRl’ Ry, = RzeRz, the velocities Rgp, R}, Ry determine the

motion of P as

V=R=R

OERQ + RIERI + R2€R2 + 50 X ﬁo + (ﬁo + 51) X ﬁl

+ (g + 0, + @) xRy (29)

13




where

is the absolute angular velocity of E, while 56 + 51 is the absolute angular
velocities as seen in reference frames moving with ;Rl and ERZ, respectively.
The present manner of decomposing rotational motion is well adapted to the
description of physical librations since setting ﬁg = (0, for example,
corresponds to lumar rotation Just egual to orbital motion 50 + 51. The
extension to rotations more highly compounded is obvious, and the neglect

of heliocentric motion is seen to correspond to suppressing ﬁo. It is of
interest to observe how the familiar centripetal and Coriolis accelerations
are generalized even in this simple case of double compound rotation when

R, and 52 are constants. Direct differentiation of (26), When ﬁo = 0,

gives acceleration as
.

A=V=mRe + RZER +2q; xRy +2(9; + 2,) xR,

Ry 2

+8) x (B, x Ry) + (@) +8) x [(8), +8,) xR, ] (30)

In addition to the familiar-looking terms on the first line of (30), and the
conventional centripetal acceleration represented by the first term of the
second line, there is finally a term which is expanded by the rules of vector
algebra as

Rylay2 + 02 + 20,-7,) + () + 3,)(R,-d,) (31)

when it is noted that we can take Q,°R, = 0. When the subscript "2" is
replaced by "0", the first term shows that the geocentric centripetal
acceleration proportional to 912 is augmented by heliocentric motién not

simply by the amount Q¢2, but also by ) 'Ry, which is roughly one seventh

1k




of 912, and hence much more important than the 002 contribution which is
roughly 2;2/178.7. The last term in (31), moreover, is nonzero and even
the omitted portion §2°52 is nonzero in general for a rigid body, since
the vanishing for one point depends on a choice of ﬁz appropriate to that
point's location and instantaneous velocity.

The term (28) has been omitted from the libration equations, as already
indicated, on account of the smallness of each of its factors. It is now
possible to estimate the magnitude of this term and to compare with other
terms that are retained in the analysis. Neglecting heliocentric motion,
the total angulﬁr velocity of the Moon appears as i, + 52 in (29), and the
orbitael motion ) can be resolved to find its xj- and xy~-components q and r.
Although these components are not completely evaluated, the libration
contribution being neglected still, it seems reasonable to regard the product
(28) thus obtained as a first approximation, by considering the librational
motion to be small compared with the total orbital motion.

The orbital motion is represented by the angular velocity of magnitudg
n normal to the orbit plane, and by the vector -y normal to the ecliptic,
representing the motion of the descending node of the lunar equator. A
fixed direction in the ecliptic is defined by %, so that ¢ is measured in

)
the indirect sense from X to the descending node X.

ecliptic

Junar equator ecliptic

15




When ¢ measures the longitude of axis x; in the lunar equatorial plane from
the descending node X, the equator being inclined an angle 8 to the ecliptic,
the components of -§ in the x,, X, directions are respectively sin¢ siney

and cos¢ sinei. The ascending node of Earth's orbit is at longitude ¢,

known to be a very small angle, and when it is neglected the proper orbital
motion, represented by a vector inclined an angle i to the ecliptic normsal,
has components -siné sin(8 + i) n and -cosé sin(@ + i) n. Thus the orbital

contributions to q and r are taken as

-n sin¢ sin(e + i) + ) sing sine

ffe]
[

(32)
-n cos¢ sin(@ + 1) + § cos¢é 8ind

e ]
L

when these are multiplied by (B - A). Taking the values recommended by

Commission 17 of the IAU in 196k as

6 = 1°30'54" 2+ 30"
(33)

i

5009116" ry 23"

and noting that the 18%—year period of nodal regression gives the ratio

¥ o1

n 248
while

sind . 1

sin(e+i) _ L.28

the first term on the right side of each of equations (32) is more than a
thousand times greater than the second. We will accordingly take approximately

for the longitudinal cemtrifugal couple (28)
n?2
-(B - A)gr = (B - A) 5—-sin2(e + i) sin2¢ (34)

16




in which form it is clear that the usual neglect of this term is related

to the "smallness" of the angles 0§ and i. Although these are each assuredly
small compared with one radian, their sum and its square are to be compared,
for example, with the second term on the left in (21) and neglected only

if found to be very small by comparison. An equally valid criterion depends
on the comparison with the inequality terms on the right side of (21), and
this has the further advantage that the terms H are known. When the numerical
value of sinz(ﬁ + i) is converted to seconds of angular arc, corresponding

to the form in which H is customarily given, and the factor 3 is introduced in
numerator and denominator for greater ease of direct comparison the augmented

form of (21) becomes

Sz * 3 o u= 3n2(B E A)[2 Hsinw - 3,143" sin2¢] . (35)

The values of the inequalities H for the principal elliptic term and annual
equation respectively are given (for example by Plummer, p.316) as 22,639"
and -668".9 respectively, the latter of the two being retained for purposes
of estimating (B - A) from observational data. The centrifugal couple
included as the last term in brackets in (35) is evidently appreciably larger
than the annual equation forcing term.

A closer inspection of the free oscillations is obtained by using (16)

to express the harmonic variation of centrifugal couple in the form
sin2¢ = sin2(nt + ¢) + 2u cos2(nt + ¥) (36)

so that the homogeneous equation corresponding to (35) is

2 - in2( g+i
%z%-+ 3n2 B S L §l£gigill-2 cos2(nt + ¢)} u=0 (31)

17




recognized as Mathieu's Equation (this modification of the equation of
1libration in longitude wes proposed on different grounds by S5.G. Makover
in the Bjull. Inst. Teoret. Astr., 8, 249, 1962, and has been the subject
of subsequent controversy). In the circumstance that libration amplitudes
are small, it thus appears that the centrifugal couple gives rise to free
oscillations that are more accurately examined by the methods of Floquet
than as represented by harmonic oscillator through (21).

It is of interest to note how the iibration in longitude can be expressed
in terms of the inclinations ® and i, when the first term on the right side
of (36) alone is retained (i.e., wvhen the procedure of questionable consistency
is followed that still treats the motion as a harmonic oscillator).
Comparing the forms of (21) and (35), it is seen that the particular solution
introduced by the centrifugal couple term, analogous to (22), is

%— sin2(6+1)

u, = +3n2 B-A sin2(nt + ¢) (38)

¢ ()2 - 32 BR

vhen ¥ is neglected as before compared with 2n, a bi-weekly oscillatory
frequency.

From (38) it is seen that when appropriate observational data can furnish
a value for the amplitude of Ups the principal inertia moment difference
B -~ A can be expressed in terms of the angles 6 and i, It will be recalled
that the larger principal moment difference C - A is classicaelly evaluated
in terms of these angles, and the two differences B - A and C - A are thus

related by the same constants.

18
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